A model-based block-triangular preconditioner for the Bidomain system in electrocardiology

نویسندگان

  • Luca Gerardo-Giorda
  • L. Mirabella
  • Fabio Nobile
  • Mauro Perego
  • Alessandro Veneziani
چکیده

We introduce a preconditioner for the solution of the Bidomain system governing the propagation of action potentials in the myocardial tissue. The Bidomain model is a degenerate parabolic set of nonlinear reaction-diffusion equations. The nonlinear term describes the ion flux at the cellular level. The degenerate nature of the problem results in a severe ill conditioning of its discretization. Our preconditioning strategy is based on a suitable adaptation of the Monodomain model, a simplified version of the Bidomain one, which is by far simpler to solve, nevertheless is unable to capture significant features of the action potential propagation. The Monodomain preconditioner application to a non-symmetric formulation of the Bidomain system results at the algebraic level in a lower block-triangular preconditioner. We prove optimality of the preconditioner with respect to the mesh size, and corroborate our theoretical results with 3D numerical simulations both on idealized and real ventricle geometries. 2009 Elsevier Inc. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Emory University Spectral Analysis of a Block-triangular Preconditioner for the Bidomain System in Electrocardiology

In this paper we analyse in detail the spectral properties of the block-triangular preconditioner for the Bidomain system in non-symmetric form, introduced in [8]. We provide an explicit formula to optimize the preconditioner performance, and we illustrate our findings with some numerical test in three dimensions.

متن کامل

Multilevel Schwarz preconditioners for the Bidomain system and applications to electrocardiology

Mathematical modeling and computer simulation has become in recent years an important support to experimental studies, for investigating the bioelectrical activity in cardiac tissue. The most complete mathematical model of electrocardiology is the Bidomain model, a degenerate parabolic system of nonlinear reaction-diffusion equations, coupled with a system of ordinary differential equations. In...

متن کامل

BPX preconditioners for the Bidomain model of electrocardiology

The aim of this work is to develop a BPX preconditioner for the Bidomain model of electrocardiology. This model describes the bioelectrical activity of the cardiac tissue and consists of a system of a non-linear parabolic reaction-diffusion partial differential equation (PDE) and an elliptic linear PDE, modeling at macroscopic level the evolution of the transmembrane and extracellular electric ...

متن کامل

A model preconditioner for the Bidomain problem in electrocardiology

We introduce a preconditioner for the solution of the Bidomain system governing the propagation of action potentials in the myocardial tissue, represented by a degenerate parabolic set of nonlinear reaction-diffusion equations. The nonlinear term describes the ion flux at the cellular level. The degenerate nature of the problem results in a severe ill conditioning of its discretization. Our pre...

متن کامل

Parallel coupled and uncoupled multilevel solvers for the Bidomain model of electrocardiology

The Bidomain model describes the spread of electrical excitation in the anisotropic cardiac tissue in terms of the evolution of the transmembrane and extracellular electric potentials, v and ue respectively. This model consists of a non-linear parabolic reaction-diffusion partial differential equation (PDE) for v, coupled with an elliptic linear PDE for ue. The evolution equation is coupled thr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • J. Comput. Physics

دوره 228  شماره 

صفحات  -

تاریخ انتشار 2009